
 A Role-Based Delegation Model and Some Extensions

 Ezedin Barka and Ravi Sandhu
Laboratory for Information Security Technology

 Information and Software Engineering Department, MS 4A4
George Mason University, Fairfax, VA 22030, USA
 {ebarka,sandhu}@ise.gmu.edu

 www.List.gmu.edu

Abstract

In Role-based Access control (RBAC)
permissions are associated with roles and users
are made members of roles thereby acquiring
the associated permissions. User delegation in
RBAC is the ability of one user (called the
delegating user) who is a member of the
delegated role to authorize another user (called
the delegate user) to become a member of the
delegated role. This paper proposes a simple
but practically useful model for delegation
called RBDM0 (role-based delegation model
zero). The paper also explores some extensions
to RBDM0 including issues of revocation,
partial delegation, multiple step delegation, and
delegation with hierarchical roles.

1 Introduction

Role-based access control (RBAC) has received
considerable attention as a proven alternative to
traditional discretionary and mandatory access
control [FCK95, SCFY96, San97]. In RBAC
permissions are associated with roles. Users are
made members of appropriate roles based on
their responsibilities and qualifications, thereby
acquiring the permissions of these roles. Users
can be easily reassigned from one role to
another. Roles can be granted new permissions
as new applications and systems come online,

and permissions can be revoked from roles as
needed.

In this paper we explore the concept of
delegation in context of RBAC. The basic idea
of delegation is that some active entity in a
system delegates authority to another active
entity to carry out some functions on behalf of
the former. Delegation in computer systems can
take many forms: human to human, human to
machine, machine to machine and perhaps even
machine to human. In this paper we focus on
the human to human form of delegation in
computer systems. Specifically we consider the
ability of a user in a role to delegate his role
membership to another user who belongs to
some other role.

We develop a simple but practically useful
model for delegation called RBDM0 (role-based
delegation model zero). We motivate the
model and give a formal definition for it. We
explore some possible extensions to the original
model that will add some complexity. These
include issues of revocation, partial delegation,
multiple step delegation, and delegation with
hierarchical roles.

To appreciate the motivation behind role-
based delegation, consider the roles in figure 1
from a hypothetical computer science
department in a University. An intuitive

scenario to illustrate delegation would be to
have a professor give his key for his office to a
secretary to do some filing or allowing his
teaching assistant to administer an exam or to
grade a homework. Another scenario is to have
a guest speaker from outside of the school
faculty substituting for the original assigned
professor. All of these activities are considered
delegation simply because in each case an
original member of a role is delegating his/her
role membership to someone else to perform
some task on his or her behalf. This can benefit
the overall interests of the organization by
letting the work continue even in the absence of
the original member of that role. These types of
activities have to be monitored and controlled in
such a manner so that the resource inside the
organization can stay protected. For example,
in figure 1 a professor could be permitted to
delegate the professor role to a secretary or a
teaching assistant but not to a student. Also, a
teaching assistant who is given the key to a
professor’s office is not allowed to further give
the key to someone else (this is called one step
delegation).

 Secretary Chairman Professor

 Student T.A R.A

 Figure 1: An example of Computer Science
 Department Roles

The rest of the paper is organized as following:
We begin by giving a background and review of
delegation and of the RBAC96 model in section
2. In section 3 we define and explain in full
detail the simple role-based delegation model
(RBDM0). Section 4 introduces possible

extensions to RBDM0. Section 5 concludes the
paper.

2 Background and review
2.1 Delegation

There are many forms and definitions of
delegation in the literature. Most commonly
delegation has been studied as human to
machine and machine to machine delegation
[Glad97], [ABLP96], [GM90], [VAS91].
Models for propagation of access rights also
relate to delegation indirectly (e.g. HRU, TAM,
SPM, and the Take Grant model) [HRU76],
[San97], [Lamp71]. The scope of our model
(RBDM0) is to address the human to human
delegation, whereby a user in a role (delegating
role) delegates his role membership to another
user in another role (delegate role). This type of
delegation has not been discussed in the
literature so far. This paper is the first attempt
to model delegation involving user to user based
on roles.

2.1.1. Work that is directly related to
delegation

Gasser and McDermott [GM90] defined user to
machine delegation as “the process whereby a
user in a distributed environment authorizes a
system to access remote resources on his
behalf.” The user’s authorization of his process
to act on his behalf is a form of delegation of
rights from the user to the process. In some
cases the user may delegate the rights to one of
several permissible roles or identities (e.g., by
logging in using different names and/or
passwords), in order to limit the actions of the
process to some subset that user is authorized.
Limited delegation also occurs routinely in
multilevel secure systems where the user selects
a single classification of his process that is a
subset of the access class for which the user is
authorized [GM90].

Sandy Alice Bob
Charlie

Ali
Bob

Ezedin
Qamar

Gail
June

Gladny [Glad97] considered the security
requirements for a digital library that emulates
massive collections of paper and other physical
media for clerical, engineering, and cultural
applications. He proposed an access control
method that mimics organizational practice by
combining a subject tree with ad hoc role
granting that control privileges for many
operations independently. Scaling to many users
is accomplished by emulating vertical
delegation in organizational hierarchies,
extended to permit privilege delegation from
any to any other node, up, down, or across the
organization tree; this provided a way to
represent special administrative roles like
security officers. A driving objective is that
every privilege should be traceable as a
sequence from a custodial user.

 Varadharajan et al [VAS91] consider the
essence of the delegation problem to be the
verification that an object that claims to be
acting on another’s behalf is indeed authorized
to act on its behalf. In practice this means that
we need to ensure that the information is
securely transferred between the objects
(process to process delegation).

2.1.2. Work that is indirectly related to
delegation

Propagation of permissions can also be
considered as delegation. A large number of
papers have been published in this area. Some
of the well known models are: HRU, SPM,
TAM, TG [HRU76], [San97], [Lamp71].

2.1.3 Scope

The scope of our work is to address user-to-user
delegation based on RBAC. We will base our
work on RBAC0 of the RBAC96 family of
models [SCFY96]. This means that we will
consider only flat roles. Extension to delegation
with hierarchical roles is discussed as an

extension in this paper. We chose this approach
in order to work out a simple but useful model
in complete detail and then gradually introduce
extensions to add functionality in an
incremental manner.

2.2 RBAC0-Flat roles

Our work is cast within the framework of the
well-known RBAC96 model [San97]. We use
the simplest form of this model, called RBAC0,
as summarized in figure 2. A user is a human
being, a role is a job function and permission is
an approval of access to some objects or a
privilege to carry out a particular task. The
management of permissions and roles is greatly
simplified by associating permissions with the
roles and assigning the users to roles. In this
way the users acquire the associated permission.
Roles are created for various job functions in an
organization. The permissions required to carry
out the jobs are associated with the roles. New
permissions can be granted to roles as new
applications and systems are incorporated.
Unnecessary permissions can be revoked from
the roles. Users are assigned to the roles
depending on the responsibilities and
qualifications and can be reassigned from one
role to another. (The session concept of
RBAC96 is not used in our work and is hence
omitted here).

 User Permission
 Assignment Assignment

 Figure 2: Simplified version of RABC96
3. RBDM0-Flat roles

This model is the simplest form of the RBDM
model and is based on RBAC0 of the RBAC96
family. This means that the delegation
addressed in this section is between users in flat
roles (no inheritance of permissions between

 U
 Users

 R
 Roles

 P
Permissions

roles is involved). First we give some
assumptions and basic elements that we will use
throughout the paper.

3.1 Assumptions and basic elements

Delegation between members in the same role is
not allowed because it is meaningless. This
assumption is very basic and it will not be
relaxed throughout the paper.

The delegation addressed in this model is a one
step delegation. This means that the delegated
role can not be further delegated. Hence, only
the original members can delegate. We will
keep this assumption in our original model, but
as part of our extended model we will relax this
assumption and extend the model to allow some
multi-step delegation.

The delegation is total. Each user in a delegating
role delegates the total package of permissions
embodied in that role or does not delegate at all.
This assumption will also be relaxed later when
we extend our model to include partial
delegation, where we will distinguish between
delegable and non-delegable permissions.

Each delegating role r has two types of
members:

- Original members Users_O(r) are the
members which originally assigned to the
role by the system administrator

- Delegated members Users_D(r) are the
members which are assigned to the role by
other original members (that is assigned by
delegation)

To simplify revocation we assume in our basic
model that any original member in a role can
revoke the delegation of any delegate member in
that role. That is revocation is not related to
who did the delegation. As we will see

revocation is one area which presents many
different policy choices, some of which will be
explored in the extensions discussed in this
paper.

We assume each unit of delegation has a time
element associated with it called duration (T).
The duration of each delegation is under the
control of the delegating user. Once the
assigned time for the delegation expires, the
delegation is automatically revoked.
Revocation of delegation can also be exercised
by original members in the delegating role even
if the duration of delegation is still valid.

The following definitions formalize the above
discussion.

Definition 1 The following is a list of the
original RBAC96 components

• U and R and P are sets of users, roles, and
permissions respectively

• UA ⊆ U × R is a many to many user to role
assignment relation

• PA ⊆ P × R is a many to many permission
to role assignment relations

• Users: R→2U is a function derived from UA
mapping each role r to a set of users where
Users(r) = {U | (U, r)∈UA}

• Permissions: R→2P is a function derived
from PA mapping each role to a set of
permissions where Permissions (p) = {P | (P,
r) ∈ PA}

Definition 2 The RBDM0 model adds the
following components:
• UAO ⊆ U × R is a many to many original

member to role assignment relation
• UAD ⊆ U × R is a many to many delegate

member to role assignment relation
• UA = UAO ∪ UAD

• UAO ∩ UAD = ∅ Original members and
delegate members in the same role are
disjoint

• Users_O(r) = {U | (U, r)∈UAO}
• Users_D(r) = {U | (U, r)∈UAD}
• All members Users_O(r) ∪ Users_D(r) in a

role get all the permissions assigned to that
role

• Note that users_ O(r) ∩ users_ D(r) = ∅
because UAO ∩ UAD = ∅

• T is a set of durations
• Delegate roles: UAD → T is a function

mapping each delegation to a single duration

3.2 Delegation

In RBAC96, the security officer handles
assignment of users to roles [San96]. In
RBDM0, the delegation from one user in a
delegating role to another user in a different role
is actually making the delegated user a member
of the delegated role. Thus, the delegating user
handles this function [Glad97]. In this paper
our focus is exclusively on the user-user
delegation. This function is a widely
decentralized task that can be taken care of by
the users themselves and without continuous
involvement from the security officer.

User-user delegation is authorized in RBDM0
using the following relation.

Definition 3 RBDM0 controls user-user
delegation by means of the relation can-delegate
⊆ R× R.
Can-delegate is irreflexive. This means that a
user in a role cannot delegate his membership to
another user in the same role, since this is
meaningless.

The meaning of (a, b) ∈ can-delegate is that a
user (say, Alice) who is an original member of
role a can delegate her role membership to any
another user (say, Bob) who is an original

member of another role b. For example, If
Alice ∈ User_O(a) and Bob ∈ User_O(b), then
Alice can delegate to Bob, so thereby (Bob, a) ∈
UAD.

3.3 Revocation

So far we have described how users in a
delegating role can delegate their permissions to
others users in another roles and how we can
control this processes using the can-delegate
relation. However, as often happens in real life,
we may want to revoke rights. In the examples
described above, when the department
chairperson goes away, one or more other
professors will be delegated the chairperson’s
permissions. Subsequently, when the
department chairperson returns, the delegated
permissions need to be removed from the
delegate professor. In this section we shall look
at possible ways in which a user in a delegating
role can change his mind and revoke the
permission that he/she delegated. We will also
consider under which conditions it is not
possible to revoke a previous decision and the
issues that might arise as a result of revocation.

3.3.1 Types of revocations:

RBDM0 deals with the issue of revocation in
two ways: by using timeouts and by allowing
any original member of the delegating role to
revoke the membership of any delegate member
in that role (Grant-independent revocation).
The following two subsections describe both
approaches and discuss the pros and cons for
each approach.

3.3.1.1 Revocation using time out

In using this approach we attach a time clock to
every assigned delegation so that when the
assigned time expires, the delegation also
expires. This approach has some advantages
and some disadvantages.

Using timeouts has the following advantages:

- Timeout revocation is a simple self-
triggering process that ensures the
revocation of delegate membership
automatically.

- In attaching a timeout to the delegation we
no longer have to worry about tracking the
sponsoring roles (the delegator).

Using timeouts has the following disadvantages:

- Timeouts by themselves are not enough to
ensure security.

- If there is no other tracking mechanism,
delegate members can behave in a bad
manner during the duration of the time set
which can cause great harm to the system
before revocation takes place by time out.

- When employing this approach, we have to
choose the time carefully, because we might
overset or under set the time for delegate
members

3.3.1.2 Grant-independent revocation

This type of revocation allows any original
member in a delegating role to revoke the
membership of any delegated member in that
role. This gives the power to the original
members to protect the role from the temporary
delegate members, which can have some
advantage and disadvantage. The advantage is
that in the case where the delegate member
behaves badly, any original member can revoke
him immediately which will minimize the
damage before even the time out.

The disadvantage on the other hand is that it
raises the possibility of conflicts between the
original members. This can occur if someone

else other than the granting original member
revokes the delegate membership.

There is no need to define a can-revoke relation
in order to control the revocation of the
delegated roles in a role by the original role
members in that role because there is only one
role (the delegating role) relevant to this
process.

3.4 Summary of RBDM0

To summarize, the RBDM0 model has the basic
elements given in definition 1 and 2, and
authorizes delegation using the can-delegate
defined in definition 3. Moreover, the model
deals with the issue of revocation using the
notions explained in section 3.3.

4 Extensions to RBDM0

This section explores the possible ways by
which the model we described can be extended
to address more complicated issues. The
following is a list of possible extensions and
brief description of the impact that they would
have on the existing model.

4.1 Grant-dependent revocation

This means that only the delegating member is
allowed to revoke the role he delegated.

Adding this extension to our model means that
no other member in any role can revoke the
membership of a delegate member except for
the user that originally delegated the role. This
extension will add a great deal of complexity.
Adding grant-dependent revocation to our
model also has its own advantages and
disadvantages. The advantages of adding this
feature will add the following:

- It makes the process of revocation more
controllable

- It eliminates conflict between the original
members

The following is a list of added complications as
a result of adding this extension:

1. From the sponsor side

- In the case of revocation we have to keep
track of who the sponsoring user is in order
to do revocation. This is especially
cumbersome when dealing with a large
number of users.

- If the sponsoring role gets revoked from the
sponsoring user, then we have to deal with
issue of what to do with its delegated roles
and how.

- The misconduct of the delegate member can
go a long way without being revoked.

- Multiple sponsorship will be an issue that
we have to deal with if we allow a member
to be a delegate for more than one sponsor

2. From the supporting role’s side

- We have to worry about the supporting
role’s prerequisite condition

- We have to deal with the question of what
happens if the delegate member in the
sponsoring role loses his original
membership in his supporting role

- We have to deal with cascading revoke,
which is an awkward thing to deal with

- The number of sponsoring roles also
become a factor when dealing with
revocation, because in this case all the

problems of cascading revokes and
prerequisite conditions will increase
depending on the numbers of the supporting
roles

4.2 There are two types of permissions
(Delegable and Non-delegable permissions)

Adding permissions to our existing model will
not have any impact on the delegation or
revocation, because the only relevant element to
delegation and revocation is the human. What it
adds, however, is an extra control on what can
and can not be delegated.

By defining permission as delegable or a non-
delegable, we put the control in the hands of the
administration. This will require an additional
process that can predefine the set of permissions
as one package.

The formal definition of the modified RBDM0
will have the components from the original
model plus the following components:

• Each role has two types of permissions:

- Delegable permissions (PD) are the
permissions allowed to be delegated. These
types of permissions are available to both
the original members as well as to the
delegated members.

- Non-delegable permissions (PN) are the
permissions that can not be delegated.
These types of permissions are available
only to the original members.

• P is a set of regular Permissions
• PA ⊆ P × R is many to many permission to

role assignment relation
• PDA ⊆ P × R is many to many Delegable

permission to role assignment

• PNA ⊆ P × R is many to many Non-
delegable permission to role assignment

• PA = PDA ∪ PNA
• PDA ∩ PNA = ∅
• Permissions: R→2P is a function mapping

each role to a set of permissions
Permission (r) = {P | (P, r) ∈PA}
Permission PD(r) = {P | (P, r) ∈PDA}

 Permission PN(r) = {P | (P, r) ∈PNA}
• Original members O(r) in a role get all the

permissions assigned to that role
• Delegated members D(r) in a role get only

the delegated permissions

4.3 Two step delegation

This type of delegation allows the delegated role
memberships to be further delegated to other
roles. We show how two-step delegation can be
modeled. Multi-step delegation can be similarly
developed.

Definition 4 The RBDM0 with two-step
delegation has the following components

• U, R, P are sets of users, roles , and
permissions

• UA ⊆ U × R is many to many user to role
assignment relation

• UAO ⊆ U × R
• UAD ⊆ U × R
• UADD ⊆ U × R
• UA = UAO ∪ UAD ∪ UADD
• UAO ∩ (UAD ∪ UADD) = ∅
• Users: R→2U is a function mapping each

role r to a set of users
• Users(r) = {U | (U, r)∈UA}
• Users_O(r) = {U | (U, r)∈UAO}
• Users_D(r) = {U | (U, r)∈UAD}
• Users_DD(r) = {U | (U, r)∈UADD}

Note that user_O(r) ∩user_D (r) ∩ DD_(r) = ∅
because UAO ∩ UAD ∩ UADD = ∅

4.4 Delegation in hierarchical roles

In role hierarchies, senior roles inherit the
permissions of roles that are junior to them.
When we extend our model to capture the user
to user delegation using based on hierarchical
roles, the model becomes more complicated.
Here, we have to deal with different kinds of
delegation. Some of these delegations are
useless and some carry more risk than others do.
In this section we will only give an overview of
the different types of delegations using
hierarchical roles and introduce some formal
definitional in addition to those introduced in
the original model. More detailed explanation of
this requires further work. The following is a list
of the different types of delegations.

4.4.1 Upward delegation

This type of delegation is useless because by the
inheritance, the senior roles get all the
permissions of their junior roles. Thus, there is
no need for a user who is a member of a junior
role to delegate he/her role membership to a
user who is a member of a more senior role.

4.4.2 Downward delegation

This type of delegation works with the partial
delegation only. By that we mean that we can
not delegate the whole role because that will
shrink the hierarchy.
This type of delegation is good for promoting a
member who belongs to a junior role to be a
member in a senior role.

4.4.3 Cross sectional delegation

This type of delegation is very useful. For
example, a manager in a sales department can
delegate his role membership to a member of
the auditing department in order to conduct
some auditing in the sales department.

 In this type of delegation not only the original
member of a role can delegate, but also, every
member in a role senior to the role of the
original member can do the delegation.

Revocation issues become more complicated
when we deal hierarchical roles. This is due to
the involvement of many different roles.

Partial delegation can be accomplished by
delegating only the relevant junior role or a
combination of relevant junior roles.

5. Conclusion

In his paper we have described the motivation,
intuition and outline of a new simple and a non-
trivial model for user to user delegation using
roles called RBDM (role-based delegation
model) that is based on the Role-Based Access
control (RBAC96) developed by [SCFY96].
RBDM has two main components: RBDM0
(role-based delegation model using flat role),
and RBDM1 (role-based delegation model using
hierarchical roles). Only the first component
was described in full detail in this paper. The
second component is still evolving and will be
the subject of future work. Furthermore, in this
paper we identified and discussed a list of some
possible directions by which this model can be
extended. This list includes revocation, partial
delegation, multiple-step delegation, and
delegation in hierarchical roles.

References

 [ABLP96]Martin Abadi, Michael Burrows,
Butler Lampson and Gordon Plotkin.
A Calculus for Access Control in
Distributed Systems. ACM
Transactions on Programming

Languages and Systems, Vol. 15, No
4, September 1993, pages 706-734.

[FCK95] David Ferriaolo, Janet Cugini, and
Richard Kuhn. Role-based access
control (RBAC): Features and
motivations. In Proceedings of 11th

Annual Computer Security
Application Conference, pages 241-
48, New Orleans, LA, December
11-15 1995.

[FK92] David Ferriaolo and Richard Kuhn.
Role-based access controls. In
Proceedings of 15th NIST-NCSC
National Computer Security
Conference, pages 554-
563,Baltimor, MD, October 13-16
1992.

[Glad197] Henry M. Gladny, Access Control
for Large Collections. ACM
Transactions on Information
Systems, Vol.15, No.2, April 1997,
Pages 154-194.

[GM90] Morrie Gasser, Ellen McDermott.
An Architecture for practical
Delegation in a Distributed System.
1990 IEEE Computer Society
Symposium on Research in Security
and Privacy. Oakland, CA. May 7-9,
1990.

[HRU76] M.H. Harrison, W.L. Ruzzo, and
J.D. Ullman, Protection in Operating
Systems. Communications of ACM.
1976. Pages 461-471.

[Lamp71] B.W. Lampson, Protection. 5th

Princeton Symposium on
information science and system.
Pages 437-443.

 [San92] Ravi Sandhu, The Typed Access
Matrix Model. Proceeding
Symposium on Security and Privacy,
Oakland, CA, May 4-6, 1992, pages
122-136.

[San97] Ravi Sandhu. Rationale for the
RBAC96 family of access control
models. In Proceedings of the 1st

ACM Workshop on Role-Based
Access Control. ACM, 1997.

[SB97] Ravi Sandhu and Venkata
Bhamidipati. Role-based
administration of user-role
assignment: The UR97 model and
its Oracle implementation. In
Proceedings of IFIP WG11.3
Workshop on Data Security.
August, 1997.

[SCFY96] Ravi S. Sandhu, Edward J. Coyne,
Hal L. Feinstein, and Charles E.
Youman. Role-based access control
models. IEEE Computer, 29(2):38-
47, February 1996.

	Table of Contents
	Presentation

